180 research outputs found

    Robust Fault Diagnosis by Optimal Input Design for Self-sensing Systems

    Full text link
    This paper presents a methodology for model based robust fault diagnosis and a methodology for input design to obtain optimal diagnosis of faults. The proposed algorithm is suitable for real time implementation. Issues of robustness are addressed for the input design and fault diagnosis methodologies. The proposed technique allows robust fault diagnosis under suitable conditions on the system uncertainty. The designed input and fault diagnosis techniques are illustrated by numerical simulation.Comment: Accepted in IFAC World Congress 201

    Optimal control of linear, stochastic systems with state and input constraints

    Get PDF
    In this paper we extend the work presented in our previous papers (2001) where we considered optimal control of a linear, discrete time system subject to input constraints and stochastic disturbances. Here we basically look at the same problem but we additionally consider state constraints. We discuss several approaches for incorporating state constraints in a stochastic optimal control problem. We consider in particular a soft-constraint on the state constraints where constraint violation is punished by a hefty penalty in the cost function. Because of the stochastic nature of the problem, the penalty on the state constraint violation can not be made arbitrary high. We derive a condition on the growth of the state violation cost that has to be satisfied for the optimization problem to be solvable. This condition gives a link between the problem that we consider and the well known HH_\infty control problem

    Stochastic disturbance rejection in model predictive control by randomized algorithms

    Get PDF
    In this paper we consider model predictive control with stochastic disturbances and input constraints. We present an algorithm which can solve this problem approximately but with arbitrary high accuracy. The optimization at each time step is a closed loop optimization and therefore takes into account the effect of disturbances over the horizon in the optimization. Via an example it is shown that this gives a clear improvement of performance although at the expense of a large computational effort

    Control refinement for discrete-time descriptor systems: a behavioural approach via simulation relations

    Full text link
    The analysis of industrial processes, modelled as descriptor systems, is often computationally hard due to the presence of both algebraic couplings and difference equations of high order. In this paper, we introduce a control refinement notion for these descriptor systems that enables analysis and control design over related reduced-order systems. Utilising the behavioural framework, we extend upon the standard hierarchical control refinement for ordinary systems and allow for algebraic couplings inherent to descriptor systems.Comment: 8 pages, 3 figure

    A Generalized LMI Formulation for Input-Output Analysis of Linear Systems of ODEs Coupled with PDEs

    Full text link
    In this paper, we consider input-output properties of linear systems consisting of PDEs on a finite domain coupled with ODEs through the boundary conditions of the PDE. This framework can be used to represent e.g. a lumped mass fixed to a beam or a system with delay. This work generalizes the sufficiency proof of the KYP Lemma for ODEs to coupled ODE-PDE systems using a recently developed concept of fundamental state and the associated boundary-condition-free representation. The conditions of the generalized KYP are tested using the PQRS positive matrix parameterization of operators resulting in a finite-dimensional LMI, feasibility of which implies prima facie provable passivity or L2-gain of the system. No discretization or approximation is involved at any step and we use numerical examples to demonstrate that the bounds obtained are not conservative in any significant sense and that computational complexity is lower than existing methods involving finite-dimensional projection of PDEs

    A behavioral approach to H2H_2 optimal control

    Get PDF
    In this paper we consider a formulation of the H2H_2 optimal control problem in which the controller is not viewed as an operator that transforms measurements to controls. Instead, the controller is assumed to be a device that constrains a set of a-priori specified interconnection variables so as to achieve a controlled system whose manifest variables have a free component and satisfy an upperbound on the L2L_2 norm of its impulse response. We formalize and solve this problem in a behavioral setting, that is, without reference to system representations and input-output structures. The equivalance between the H2H_2 control problem, the generalized H2H_2 control problem and the LQ optimal control problem are established

    Model reduction for linear parameter-varying systems through parameter projection

    Full text link
    For affine linear parameter-varying (LPV) systems, this paper develops two parameter reduction methods for reducing the dimension of the parameter space. The first method achieves the complexity reduction by transforming the affine LPV system into a parameter-ordered form and establishing an affine upper bound of the system Gramians, which is extended to time-varying rate-bounded parameters. The second method is based on considering the sensitivity function of the transfer function and time evolution equations. Both methods are applied to an academic example and a thermal model. Simulation results together with some analysis are given.Comment: This paper has been accepted by 58th IEEE Conference on Decision and Control (CDC 2019, Nice, France

    Finite-time behavior of inner systems

    Get PDF
    In this paper, we investigate how nonminimum phase characteristics of a dynamical system affect its controllability and tracking properties. For the class of linear time-invariant dynamical systems, these characteristics are determined by transmission zeros of the inner factor of the system transfer function. The relation between nonminimum phase zeros and Hankel singular values of inner systems is studied and it is shown how the singular value structure of a suitably defined operator provides relevant insight about system invertibility and achievable tracking performance. The results are used to solve various tracking problems both on finite as well as on infinite time horizons. A typical receding horizon control scheme is considered and new conditions are derived to guarantee stabilizability of a receding horizon controller

    Affine Parameter-Dependent Lyapunov Functions for LPV Systems with Affine Dependence

    Full text link
    This paper deals with the certification problem for robust quadratic stability, robust state convergence, and robust quadratic performance of linear systems that exhibit bounded rates of variation in their parameters. We consider both continuous-time (CT) and discrete-time (DT) parameter-varying systems. In this paper, we provide a uniform method for this certification problem in both cases and we show that, contrary to what was claimed previously, the DT case requires a significantly different treatment compared to the existing CT results. In the established uniform approach, quadratic Lyapunov functions, that are affine in the parameter, are used to certify robust stability, robust convergence rates, and robust performance in terms of linear matrix inequality feasibility tests. To exemplify the procedure, we solve the certification problem for L2\mathscr{L}_2-gain performance both in the CT and the DT cases. A numerical example is given to show that the proposed approach is less conservative than a method with slack variables.Comment: 8 pages, 3 figure
    corecore